教案的编写要注重培养学生的信息获取和处理能力,编写教案时,要注重培养学生的科学探究和实验能力,以下是王科范文网小编精心为您推荐的集合的概念教案6篇,供大家参考。
集合的概念教案篇1
一、说教材
(1)说教材的内容和地位
本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标
根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:
1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。
2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。
3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。
(3)说教学重点和难点
依据课程标准和学生实际,我确定本课的教学重点为
教学重点:集合的基本概念及元素特征。
教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。
二、说教法和学法
接下来则是说教法、学法
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。
总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。
三、说教学过程
接着我来说一下最重要的部分,本节课的教学过程:
这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。
第一环节:创设问题情境,引入目标
课堂开始我将提出两个问题:
问题1:班级有20名男生,16名女生,问班级一共多少人?
问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?
这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。
待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。
安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。
很自然地进入到第二环节:自主探究
让学生阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。
让学生自主探究之后将进入第三环节:讨论辨析
小组合作探究(1)
让学生观察下列实例
(1)1~20以内的所有质数;
(2)所有的正方形;
(3)到直线 的距离等于定长 的所有的点;
(4)方程 的所有实数根;
通过以上实例,辨析概念:
(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母a,b,c…表示,而元素用小写的拉丁字母a,b,c…表示。
小组合作探究(2)——集合元素的特征
问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?
集合中的元素必须是确定的
问题5:在一个给定的集合中能否有相同的元素?由此说明什么?
集合中的元素是不重复出现的
问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的
我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。
小组合作探究(3)——元素与集合的关系
问题7:设集合a表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合a中?哪些不在集合a中?
问题8:如果元素a是集合a中的元素,我们如何用数学化的语言表达?
a属于集合a,记作a∈a
问题9:如果元素a不是集合a中的元素,我们如何用数学化的语言表达?
a不属于集合a,记作aa
小组合作探究(4)——常用数集及其表示方法
问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?
自然数集(非负整数集):记作 n
正整数集:
整数集:记作 z
有理数集:记作 q 实数集:记作 r
设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。
第四环节:理论迁移 变式训练
1.下列指定的对象,能构成一个集合的是
① 很小的数
② 不超过30的非负实数
③ 直角坐标平面内横坐标与纵坐标相等的点
④ π的近似值
⑤ 所有无理数
a、②③④⑤ b、①②③⑤ c、②③⑤ d、②③④
第五环节:课堂小结,自我评价
1.这节课学习的主要内容是什么?
2.这节课主要解释了什么数学思想?
设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。
第六环节:作业布置,反馈矫正
1.必做题 课本习题1.1—1、2、3。
2.选做题 已知集合a={a+2,(a+1)2,a2+3a+3},且1∈a,求实数a 的值。
设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。
四、板书设计
好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:
集合
1.集合的概念
2.集合元素的特征
(学生板演)
3.常见集合的表示
4.范例研
集合的概念教案篇2
目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:集合的基本概念
教学过程:
1.引入
(1)章头导??
(2)集合论与集合论的创始者-----康托尔(有关介绍可引用附录中的内容)
2.讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如a、b、c、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于: 如果a是集合a的元素,就说a属于a,记作a∈a
(2)不属于:如果a不是集合a的元素,就说a不属于a,记作
要注意“∈”的方向,不能把a∈a颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的'了.
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记 作n
(2)正整数集:非负整数集内排除0的集.记作n* 或n+
(3)整数集:全体整数的集合.记作z
(4)有理数集:全体有理数的集合.记作q
(5)实数集:全体实数的集合.记作r
注:(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作n*或n+,q、z、r等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成z*
课堂练习:教材第5页练习a、b
小结:本节课 我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:第十页习题1-1b第3题
集合的概念教案篇3
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1) 全体自然数0,1,2,3,4,5,
2) 代数式
3) 抛物线 上所有的点
4) 今年本校高一(1)(或(2))班的全体学生
5) 本校实验室的所有天平
6) 本班级全体高个子同学
7) 著名的科学家
上述每组语句所描述的对象是否是确定的?
二、
1)集合:
2)集合的元素:
3)集合按元素的个数分,可分为1)__________2)_________
三、集合中元素的三个性质:
1)___________2)___________3)_____________
四、元素与集合的关系:1)____________2)____________
五、特殊数集专用记号:
1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______4)有理数集______5)实数集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例题讲解:
例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )
a,直角三角形 b,锐角三角形 c,钝角三角形 d,等腰三角形
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;
2)函数 的全体 值的集合;
3)函数 的全体自变量 的集合;
4)方程组 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇数组成的集合;
8)所有正偶数组成的集合;
例3、用符号 或 填空:
1) ______q ,0_____n, _____z,0_____
2) ______ , _____
3)3_____ ,
4)设 , , 则
例4、用列举法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的数
2.图中阴影部分点(含边界)的坐标的集合
课堂练习:
例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________
例7、已知: ,若 中元素至多只有一个,求 的取值范围。
思考题:数集a满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合a不可能是单元素集合。
小结:
作业 班级 姓名 学号
1. 下列集合中,表示同一个集合的是 ( )
a . m=,n=b. m=,n=
c. m=,n=d. m=,n=
2. m=,x=,y=, , .则 ( )
a . b. c. d.
3. 方程组 的解集是____________________。
4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________。
5. 设集合 a=, b=,
c=, d=,e=。
其中有限集的个数是____________。
6. 设 ,则集合 中所有元素的和为
7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为
8. 已知f(x)=x2-ax+b,(a,b r),a=,b=,
若a=,试用列举法表示集合b=
9. 把下列集合用另一种方法表示出来:
(1) (2)
(3) (4)
10. 设a,b为整数,把形如a+b 的一切数构成的集合记为m,设 ,试判断x+y,x-y,xy是否属于m,说明理由。
11. 已知集合a=
(1) 若a中只有一个元素,求a的值,并求出这个元素;
(2) 若a中至多只有一个元素,求a的取值集合。
12.若-3 ,求实数a的值。
集合的概念教案篇4
第二教时教材:
1、复习
2、《课课练》及《教学与测试》中的有关内容目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:
一、 复习:(结合提问)
1.集合的概念 含集合三要素
2.集合的表示、符号、常用数集、列举法、描述法
3.集合的分类:有限集、无限集、空集、单元集、二元集
4.关于“属于”的概念
二、 例一 用适当的方法表示下列集合:
1.平方后仍等于原数的数集解:{x|x2=x}={0,1}
2.比2大3的数的集合解:{x|x=2+3}={5}
3.不等式x2-x-6
4.过原点的直线的集合解:{(x,y)|y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}
6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}
三、 处理苏大《教学与测试》第一课 含思考题、备用题
四、 处理《课课练》
五、 作业 《教学与测试》 第一课 练习题
集合的概念教案篇5
[课程目标]
1.掌握集合的两种表示方法(列举法和描述法);
2.掌握用区间表示数集;
3.能够运用集合的两种表示方法表示一些简单集合,正确运用区间表示一些数集。
知识点一 列举法表示集合
[填一填]
列举法
把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法叫做列举法。
[答一答]
1.什么类型的集合适合用列举法表示?
提示:当集合中的元素较少时,用列举法表示方便。
2.用列举法表示集合的优点与缺点是什么?
提示:用列举法表示集合的优点是元素清晰明确、一目了然;缺点是不易看出元素所具有的属性。
知识点二 描述法表示集合
[填一填]
描述法
(1)集合的特征性质:
一般地,如果属于集合a的任意一个元素x都具有性质p(x),而不属于集合a的元素都不具有这个性质,则性质p(x)叫做集合a的一个特征性质。
(2)特征性质描述法:
集合a可以用它的特征性质p(x)描述为{x|p(x)},这种表示集合的方法,叫做特征性质描述法,简称描述法。
[答一答]
3.什么类型的集合适合用描述法表示?
提示:描述法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集。
4.集合{x|x>3}与集合{t|t>3}表示同一个集合吗?
提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合。
知识点三 区间及其表示
[填一填]
研究函数常常用到区间的概念,设a、b是两个实数,且a
(1)满足a≤x≤b的全体实数x的集合简写为[a,b],称为闭区间。
(2)满足a
(3)满足a≤x
(4)满足a
集合的概念教案篇6
【教学目标】
1.了解集合、元素的概念,体会集合中元素的三个特征;
2.理解集合的作用,会根据已知条件构造集合;
3.理解元素与集合的“属于”和“不属于”关系,并会正确表达;
4.掌握常用数集及其记法;
5.了解数合的含义,记忆基本数集的符号;
6.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.
【导入新课】
一、实例引入:
军训前学校通知:8月21日上午8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.
二、问题情境引入:
我们高一(3)班一共45人,其中班长易雪芳,现有以下问题:
⑴45人组成的班集体能否组成一个整体?
⑵班长易雪芳和45人所组成的班集体是什么关系?
⑶假设张三是相邻班的学生,问他与高一(3)班是什么关系?
三、课前学习
1.学法指导:
(1)阅读教材的内容感受集合的含义,理解集合与元素的关系,理解数集、空集的概念;
(2)本学时的重点是集合的含义、元素与集合之间的关系以及常用数集的符号表示、空集的意义及符号;
(3)对于一个整体是否是集合的判断的关键是对“确定”两字的理解,学习时结合实例及教材上的例题进行理解。记忆常用数集、空集的符号表示。
2.尝试练习:见《数学学案》p1
四、课堂探究:见《数学学案》p1
1.探究问题:
探究1
探究2
2.知识链接:
3.拓展提升:
例1、下列各组对象能否组成集合?
(1)所有小于10的自然数;
(2)某班个子高的同学;
(3)方程的所有解;
(4)不等式的所有解;
(5)中国的直辖市;
(6)不等式的所有解;
(7)大于4的自然数;
(8)我国的小河流。
例2、下列集合哪些是数集?再试着举两个数集,并使它们分别是有限集与无限集。
(1)1、3、5、7、9组成的集合;
(2)你班学号为单数的学生组成的集合。
例3、已知a是我国所有省的省会城市构成的集合。用符号或填空。
(1)武汉_____a,北京_____a,南京_____a,郑州_____a;
(2)-1_____n,8_____,6_____n,_____n;
(3)1_____z,-2.45_____z,_____q,_____q,_____r.
例4、判断下列各句的说法是否正确:
(1)所有在n中的元素都在n*中()
(2)所有在n中的元素都在z中()
(3)所有不在n*中的数都不在z中()
(4)所有不在q中的实数都在r中()
(5)由既在r中又在n中的数组成的集合中一定包含数0()
(6)不在n中的数不能使方程4x=8成立()
答案:×,√,×,√,√,√
例5、已知集合p的元素为,若且-1p,求实数m的值
解:根据,得若此时不满足题意;若解得此时或(舍),综上符合条件的.
点评:本题综合运用集合的定义和元素与集合的关系解题,注意集合的性质的运用.
例6、设集合a={x|x=2k,k∈z},b={x|x=2k+1,k∈z},c={x|x=4k+1,k∈z},又有a∈a,b∈b,判断元素a+b与集合a、b和c的关系.
解:因a={x|x=2k,k∈z},b={x|x=2k+1,k∈z},则集合a由偶数构成,集合b由奇数构成.
即a是偶数,b是奇数设a=2m,b=2n+1(m∈z,n∈z)
则a+b=2(m+n)+1是奇数,那么a+ba,a+b∈b.
又c={x|x=4k+1,k∈z}是由部分奇数构成且x=4k+1=2·2k+1.
故m+n是偶数时,a+b∈c;m+n不是偶数时,a+bc
综上a+ba,a+b∈b,a+bc.
4.当堂训练:见《数学学案》p2
5.归纳总结:
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.
2.一般地,我们把由某些确定的对象组成的总体叫做集合(set),也简称集,组成集合的对象叫做这个集合的元素(element)
注意:集合的概念中,“某些确定的对象”,可以是任意的具体确定的事物,例如数、式、点、形、物等.
3.关于集合的'元素的特征
(1)确定性:设a是一个给定的集合,x是某一个具体对象,则或者是a的元素,或者不是a的元素,两种情况必有一种且只有一种成立.
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.
(3)无序性:给定一个集合与集合里面元素的顺序无关.
(4)集合相等:构成两个集合的元素完全一样.
(二)元素与集合的关系
1.(1)如果a是集合a的元素,就说a属于(belongto)a,记作:a∈a;
(2)如果a不是集合a的元素,就说a不属于(notbelongto)a,记作:aa,
例如,我们a表示“1~20以内的所有质数”组成的集合,则有3∈a,,4a,等等.
2.集合与元素的字母表示:集合通常用大写的拉丁字母a,b,c…表示,集合的元素用小写的拉丁字母a,b,c,…表示.
3.常用的数集及记法:
非负整数集(或自然数集),记作n;
正整数集,记作nx或n+;
整数集,记作z;
有理数集,记作q;
实数集,记作r.
课后巩固――作业
1.习题1.1,第1-2题;
2.《数学学案》p3
3.预习集合的表示方法.
会计实习心得体会最新模板相关文章:
★ 水的旅行教案6篇
★ 值日的教案6篇