在写教案之前教师一定要对相关的教学内容有清晰地认知,一份高质量的教案才能在课堂上起到关键作用,王科范文网小编今天就为您带来了二年级数学轴对称图形教案5篇,相信一定会对你有所帮助。
二年级数学轴对称图形教案篇1
教学内容:
西师版小学数学第六册第118页例1、例2及相关练习题。
教学目标:
1、在观察、操作、交流中认识轴对称图形的一些基本特征,能辨认轴对称图形,找出轴对称图形的对称轴。
2、通过观察、操作活动发展学生的空间观念,培养学生的观察能力和动手操作能力。
3、充分感受数学中的对称美,体会数学与生活的紧密联系。
教学重点:
认识轴对称图形的基本特征。
教学难点:
掌握辨别轴对称图形的方法。
教学准备:
教具:多媒体课件、一些简单的几何图形、蝴蝶图形。
学具:一些简单的几何图形(一些对称、一些不对称)
教学过程:
一、游戏活动激趣,认识对称物体
1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。
2、认识对称物体
(1)师质疑:为什么女生猜得又快又准呢?
(2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)
?设计意图:通过猜物体游戏,激发学生学习兴趣和调动学生学习积极性,通过分析猜谜成败原因,加深学生对对称物体特征的再认识,为后面认识轴对称图形打下基础。】
二、猜想验证新知,认识轴对称图形
(一)初步感知对称图形
1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。
2、师小结:像这样的图形,叫做对称图形。(板书:图形)
(二)猜想验证对称图形
1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?
2、寻找验证方法:师引导学生寻找验证对称图形的方法。(板书:对折)
3、小组合作验证:用对折的方法,验证以上平面图形。要求学生对折后认真观察:将对称图形对折后有什么发现?理解“重合、部分重合、完全重合”。
师小结:这些对称的图形通过对折能够完全重合。
(三)理解认识对称轴,轴对称图形
师:打开折过的对称图形,你有什么新的发现?
师小结:对称图形,对折后能完全重合的这条折痕,我们就把它叫“对称轴”。这些图形就叫“轴对称图形”.
?设计意图:数学来源于生活,将学生熟悉的物体抽象成平面图形,以小组合作、探究学习为载体,让学生经历观察——猜想——验证的学习过程,进而发现、理解、掌握轴对称图形的本质特征,从中培养学生动脑动手的能力。】
三、巩固练习,强化新知
1、基础练习:判断。(是否是轴对称图形)
2、应用练习:猜一猜。(课件出示p120的'第2题)
3、生活中数学:例举生活中的轴对称物体。
?设计意图:通过巩固练习,强化学生对轴对称图形的全面认识,帮助学生更加准确的判断轴对称图形。】
四、拓展延伸,动手创造
1、欣赏生活中的轴对称物体,感受对称美。
2、生动手做轴对称图形,创造美。
?设计意图:通过欣赏、制作轴对称图形,让学生充分感受数学中的对称美,体会数学知识来源于生活。】
五、全课小结
这节课我们认识了什么图形?什么样的图形是轴对称图形?
板书设计:
认识轴对称图形
完全重合
对折
二年级数学轴对称图形教案篇2
教学内容:
人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)
教学目标:
1.知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2.能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3.情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:
理解对称图形的'概念,能正确找、画对称轴。
教学难点:
准确找对称轴。
教学具准备:
1.教具:图片、剪刀、彩纸、课件
2.学具:蝴蝶几何图片、剪刀、白纸
教学过程:
一 创设情境、激趣感知
课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?
蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀? ”
蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”
蜻蜓说:“我才不信呢!”
师:你们想知道对称图形的那些知识?
生1:什么样的图形是对称图形?
生2 :对称图形有什么特点?
[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。]
二 师生互动、探究新知
(一)教学对称图形
现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?
生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
……
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。当学生分出对称与不对称的两类图形后,再次引导观察发现。使学生在探索中学习新知,亲历探索过程。]
小结:同学们观察得真仔细,图形左右两边的形状完全相同的,我们就说这些图形是对称图形。(板书:对称图形)
(二)说一说、找一找
1.生活中哪些东西是对称的,哪些不是对称的?
2.请你归归类。
小组讨论:哪些是对称的,哪些不是对称的,为什么?
3.小组反馈交流。
[设计理念:让学生在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,
同时让学生感受到生活中到处都有对称,到处都有对称的事物。]
(三)教学轴对称
1.出示剪纸作品,如下图:
师:是轴对称图形吗?
生:是的
师:剪纸有对称轴,你能把它画出来吗?说说画对称轴时要注意什么?
2.向学生提出任务:“你可以剪出一个对称的图形吗?”
①请学生动手剪纸花,在小组内交流剪法。
②让学生试剪课本第68页的上衣图,并让学生说说怎样剪,剪出来的图形才对称?
生:我是先把纸对折,在右上角处用笔画出小半圆,左下角画出小长方形,然后照着画的线剪,剪好后把对折的纸打开形成上衣对称图形。
3.请学生画出京剧脸谱的对称轴
板书“对称轴”
4.小结:对称是一种最基本的图形变换,包括轴对称、中心对称、平移对称、旋转对称和镜面对称等多种形式。对称的物体给人一种匀称、均衡的感觉,一种美感。
[设计理念:创设充分学习的空间、时间,让学生自主探究,体验知识形成的过程,培养主动探究的能力。让学生在折、画、比等活动中细心地观察、比较、分析中体验轴对称图形的特征。]
四 巩固应用
(1)第68页的“做一做”
①你看看哪些是轴对称图形,哪些不是,让学生判断哪些图形是对称的,并画出对称轴。
② 交流找对称轴的方法。
(2)第70页的第2题,让学生先用正方形、长方形、圆形的纸折一折,再画出来。
(3)第70页的第3题
①可以先让学生通过讨论、交流探索画的方法。
②应用轴对称图形的性质,对称轴画出另一半。
五 拓展应用
①我们认识了轴对称图形,也找了许多图形的对称轴,接下来要请你们自己在方格纸上自己设计一个轴对称图形,并画出对称轴
② 学生展开设计想象的空间
③ 小组交流,你画了图形?对称轴在哪里?
二年级数学轴对称图形教案篇3
课型:复习
学习目标(学习重点):
1.了解轴对称与轴对称图形,会准确画出轴对称 图形,找出对称轴、对称点等.
2.能熟练应用轴对称的性质.
3.复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用.
例题:
例1.(1)下列说法中,正确的个数是( )
①轴对 称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言.
a.1个 b.2个 c.3个 d.4个
(2)如图在一个规格为6 ×12(即6×12个小正方形)的球台上,有两个小球 a,b。若击打小球a,经过球台边的反弹后,恰好击中小球b,那么小球a击出时,应瞄准球台边上的点( )
a.p1 b.p2 c.p3 d.p4
例2.作图题(1)作 出图1中△abc关于直线l的对称图形;
(2)如图2,∠bac=60°,点p在边ac上,试用带刻度的直尺和量角器,在∠bac内部找一点o,使点o到a、p的距离相等,且到∠bac的两边的距离相等.
图1 图2
例3.已知:如图,△abc中,△abc的外角平分线ad,交bc的垂直平分线于d点,de⊥ab于点e,df⊥ac于点f,
(1)求证:be=cf;
(2 )若ab=15,ac=7,求ae的长.
课后续助:
1.点a和点b关于直线l对称 ,对直线l任意一点p,必有pa____pb
2.对称图形________有一条对称轴,________有两条对称轴,_____ ___有四条对 称轴,_______有无数条对称轴。(各填上一个图形即可) .
3.到三角形的三个顶点的距离相等的点是___________的交点.到三角形的三边的距离相等的点是___________的交点.
4.如果△ a bc与△a/b/c/关于直线l对称,且∠a=500,∠b/=700,那么
∠c/ =___ _.
5。如图,点p在∠aob内,pm⊥oa于m,pn⊥ob于n,且pm=pn,连结op,则op是________________.依据是_______________ ________________.
6.如图,ab=ac,ac的垂直平分线交bc于d,垂足为e,
若ab=10,△abd的周长为23,求△abc的周长.
7.如图,有一个三角形纸片abc,ab=10cm,bc=7cm,ac=6cm,沿过点b的直线折叠这个三角形 ,使顶点c落在ab边上的点e处,折痕为bd,求△aed的周长.
8.如图,在△abc中,∠bac=90°,be平分∠abc,de⊥bc于d,de=dc.
求证:bc=ab+ae.
9.如图,在四边形abcd中,bc>ba,ad=cd,
bd平分∠abc,试说明:∠a+∠c=180°.
二年级数学轴对称图形教案篇4
一、教学目标:
1、学生通过观察、操作,初步感知轴对称现象。
2、让学生能在方格纸上画出简单的轴对称图形。
3、通过观察操作活动,发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美,增强学生学习的兴趣。
二、教学重点:
观察操作,初步感知轴对称现象。
三、教学难点:
结合实例感知轴对称现象。
四、教具准备:
实体标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形
五、学具准备:
图画纸、彩色纸、剪刀、实体标本、树叶若干片、胶水若干瓶、图形、画有等距离点子的方格纸。
六、教学过程:
观察激情:
教师出示实物标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形。这些昆虫标本、树叶及图形好看吗?学生被这些鲜艳的色彩、美丽的图案吸引住了,异口同声地说:“很美,很漂亮”。“他们有什么特征?”生:“两边的形状是一样的`”。“你在日常生活中还见过类似特征的东西吗?”同学们纷纷举手抢答,教师根据学生的回答(如飞机、剪刀、花瓶、黑板、镜子等)把这些图形贴或画在黑板上,接着说:“今天我们一起来认识、研究这类图形有什么共同的特征,通过你们自己动手、动脑学会一种新本领,并运用你学到的新本领设计出许多更多、更美的东西和图案,使我们的生活变的更丰富,美丽。”
操作明理:
剪剪、折折、发现特征。
(1)指导学生把图画纸对折,如左图画出小树图。用剪刀沿图案剪下来,打开观察。
(2)自己在用一张彩色指对折,在折好的一侧画己想画图形的一半,在剪下来打开(有的是一朵花、有的是一片树叶或各种装饰图案等)教师问:“这些图形虽各不相同,但它们有一个共同的特征,你能找出来吗?”(两半图形完全相同,大小一样)。
(3)请学生把打开的两半、再沿折痕对折,你又发现了什么?(两半完全重合)
(4)教师把印有下列图案的工作纸、分别发给每个小组,要求照刚才的方法对折观察,讨论这些图形也有什么特征。
师生共同概括出:如果把一个图形沿着一条直线对折过来,在直线两边的图形完全重合,这种图形就是轴对称图形,折痕所在的这条直线是这个图形的对称轴。
强化新知
(1)研究讨论刚才同学们举例说出的图形(飞机、剪刀......等)是不是轴对称图形?为什么?
(2)教师出示下列图形,引导学生思考:
那些图是轴对称图形?如何标准地找出它的对称轴。
(把图形对折,如果两边能完全重合,便是轴对称图形,折痕就是这个图形的对称轴)
引导发现,拓开思路。
学生说一说生活中的那些东西是对称图形?你能找出蜻蜓、树叶、蝴蝶、北京脸谱的对称轴吗?使学生了解对称在生活中的应用性。
运用提高、发展思维。
(1)比一比谁用树叶拼成的轴对称图形最多、变化多。
(2)下列图形是轴对称图形吗?是轴对称图形的请画出对称轴?
(课本68页的做一做)
(3)小猴不小心,把小花猫漂亮的照片污损了一部分,你能想办法帮帮小猴把污损的部分恢复原样吗?
(4)比一比,谁在方格纸上设计的轴对称图形最美,(选佳作贴在黑板上,及时反馈、欣赏)。
课堂
什么是轴对称图形,怎样准确地找出它的对称轴,这就是我们今天学到的新本领。轴对称图形真的很美丽,因此被广泛应用于服装、家具、交通工具、建筑等各方面的设计中。希能运用今天所学的知识把我们的环境装扮得更美丽。
二年级数学轴对称图形教案篇5
课题:1.1~1.4复习(初二上数学)b版
课型:复习
学习目标(学习重点):
1、了解轴对称与轴对称图形,会准确画出轴对称 图形,找出对称轴、对称点等、
2、能熟练应用轴对称的性质、
3、复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用、
例题:
例1、(1)下列说法中,正确的个数是( )
①轴对 称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言、
a、1个 b、2个 c、3个 d、4个
(2)如图在一个规格为6 ×12(即6×12个小正方形)的球台上,有两个小球 a,b。若击打小球a,经过球台边的反弹后,恰好击中小球b,那么小球a击出时,应瞄准球台边上的点( )
a、p1 b、p2 c、p3 d、p4
例2、作图题(1)作 出图1中△abc关于直线l的对称图形;
(2)如图2,∠bac=60°,点p在边ac上,试用带刻度的直尺和量角器,在∠bac内部找一点o,使点o到a、p的距离相等,且到∠bac的两边的距离相等、
图1 图2
例3、已知:如图,△abc中,△abc的外角平分线ad,交bc的垂直平分线于d点,de⊥ab于点e,df⊥ac于点f,
(1)求证:be=cf;
(2 )若ab=15,ac=7,求ae的长、
课后续助:
1、点a和点b关于直线l对称 ,对直线l任意一点p,必有pa____pb
2、对称图形________有一条对称轴,________有两条对称轴,_____ ___有四条对 称轴,_______有无数条对称轴。(各填上一个图形即可) 、
3、到三角形的三个顶点的距离相等的点是___________的交点、到三角形的三边的距离相等的点是___________的交点、
4、如果△ a bc与△a/b/c/关于直线l对称,且∠a=500,∠b/=700,那么
∠c/ =___ _、
5。如图,点p在∠aob内,pm⊥oa于m,pn⊥ob于n,且pm=pn,连结op,则op是________________、依据是_______________ ________________、
6、如图,ab=ac,ac的垂直平分线交bc于d,垂足为e,
若ab=10,△abd的周长为23,求△abc的周长、
7、如图,有一个三角形纸片abc,ab=10cm,bc=7cm,ac=6cm,沿过点b的直线折叠这个三角形 ,使顶点c落在ab边上的点e处,折痕为bd,求△aed的周长、
8、如图,在△abc中,∠bac=90°,be平分∠abc,de⊥bc于d,de=dc、
求证:bc=ab+ae、
9、如图,在四边形abcd中,bc>ba,ad=cd,
bd平分∠abc,试说明:∠a+∠c=180°、
会计实习心得体会最新模板相关文章: