及时写好教学反思是教师提升自己综合能力的重要途径,通过写教学反思可以找到适合自己的教学方法,以下是王科范文网小编精心为您推荐的面积的变化教学反思5篇,供大家参考。
面积的变化教学反思篇1
本《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的,主要研究几个相同的正方体排成一行拼起,得到的长方体与原几个正方体表面积之和的关系,发现并理解其中的变化规律,培养学生的空间观念。我在传授新知时主要以学生活动为主,让学生在操作活动中发现规律,解决问题。
新标强调,教学是教与学的交往、互动,师生双方相互交流、相互沟通、相互启发、相互补充,在这个过程中教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。为了达成这一目标,我在授这一环节中安排了2个活动。活动一:探索2个棱长是1厘米的正方体拼成长方体的表面积变化情况,通过让学生动手拼一拼、看一看、指一指、想一想这些活动,让学生体会表面积发生了变化,体验两个正方体拼成长方体后表面积减少了原两个面的面积。通过学生自己动手操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映。活动二:探索、4、个棱长是1厘米的'正方体拼成长方体的表面积变化规律,进而加深到用n个棱长为1厘米的小正方体呢?教材对这节的要求没有明确的规定。比如在活动:学生很容易发现,每增加一个正方体,表面积就减少两个拼接面。找到“减少的面的个数”与“正方体的个数”之间的关系才是最关键的。为了让学生发现这些规律,安排了活动二,学生发现这些规律还是有些困难的,因此我在修改教案时增加了一个环节:我就直接提出问题“拼接条数”、“正方体的个数”与“减少的面的个数”之间有什么关系吗?再进一步就举例,五个正方体拼在一起,有4个拼接处,6个、7个……n个呢?每个拼接处减少两个面,所以可以用公式(正方体的个数-1)×2表示减少的面的个数。在寻找“减少的面数”与“减少的面积数”、“拼成的长方体的表面积”有什么关系吗?学生在用棱长为1厘米的小正方体时,很快找出规律,但接着将棱长加深到棱长是a时,表面积减少和拼成的长方体的表面积时,找出这个环节上的表现不佳,这是本节的难点,对五年级的学生说确实存在困难,后我反思在此环节上我的引导不到位,并没有找到学生通俗易懂的方法,比如引导时我可以考虑引导学生从拼成的长方体剩下多少个正方形的面,发现剩下面与正方体的个数有什么规律进行引导,可能效果会好。
本节通过让学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律。经历了操作、观察、猜测、分析、实验、验证等活动过程,使学生头脑中有“拼”这一表象,建立了空间观念。这两个活动都是学生通过动手操作、仔细观察、认真思考、合作交流等形式,在引领中体验发现物体拼摆过程中表面积的变化规律,接着用n个棱长为a厘米的正方体排成一行拼成一个长方体让学生思考,进一步巩固发现的规律,提高了学生空间观念的积累水平,发展了数学思考。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。
培养了学生优化思维和求异思维的能力,促进堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。
面积的变化教学反思篇2
?长方体和正方体》单元最后一课时是一节实践活动课,主要探讨相同的正方体拼成的大长方体表面积的变化规律。这一课如何去教,备课组的老师曾在一起进行了初步研讨,大家提到最多的就是这一内容考试会考什么,学生最容易出现的错误是什么,采取怎样的策略防止学生少出差错,等等。显然,仅仅着眼于帮助学生应付考试的观念是狭隘的,教学时应更关注如何促进学生的有效发展。因此,在教材最后一部分“拼拼说说”的环节,我是这样组织教学的。
[片段一]
师:用6个体积是1立方厘米的正方体可以拼成几种不同的长方体?在拼成的长方体中,哪一个长方体的表面积小?为什么?
书上原来的问题是“哪个长方体的表面积大?大多少?”只要求学生通过简单地数一数减少的面,计算拼成的长方体表面积。而我把问题改成“哪个长方体的表面积小?为什么?”主要是为了引导学生探索,体积一定时,物体表面积的变化规律。
学生通过学具操作,很快发现有两种不同的拼法。第一种拼法减少了10个小正方形的面,第二种拼法减少了14个小正方形的面,所以第二种拼法得到的长方体表面积小。
师:大家通过数减少的面,确定谁的.表面积小当然是可以的。能否通过简单的操作来说明第二种拼法的表面积比第一种小呢?
学生一时茫然。
师:(进一步引导)你们能否在第一种拼法的基础上,稍作变动,将它转化成第二种拼法呢?
各组学生完成了如下操作:
师:从刚才的操作过程中,长方体的表面积增加了哪一部分,又减少了哪一部分?你们能发现吗?
学生很快发现,当把第一种拼法分成两部分时,长方体增加了2个小正方形面,再把两部分拼在一起时,又减少了6个小正方形面,所以第二种拼法表面积小。
很多学生都认为这种方法简单,但就在这时,一个男生站了起来:“老师,你的要求是不能数,刚才我们比较的时候还不是数了吗?”
是啊,这是我备课时没有考虑到的。我灵机一动,在黑板上画了一个隐去了小正方体的示意图:
通过示意图很容易发现增加的两个面比较小,而减少的两个面却要大得多。
[片段二]
(按教材要求,教学内容已基本完成,以下是我对教材的进一步开发与尝试。)
师:如果用8个体积是1立方厘米的小正方体拼,有几种拼法?拼成怎样的长方体表面积最小?
学生很快通过操作发现有以下三种拼法,其中第三种拼法的表面积最小。
师:如果用12个体积是1立方厘米的小正方体拼,有几种拼法?拼成怎样的长方体表面积最小?
学生摆出了以下四种拼法,第四种拼法的表面积最小。
师:如果用16个体积是1立方厘米的小正方体拼,拼成怎样的长方体表面积最小?
……
师:从前面的四次操作中,怎样拼得的长方体表面积最大?怎样拼得的长方体表面积最小?
学生的讨论异常热烈,并很快发现拼成一长排,表面积最大,但对表面积最小的拼法表述却各不一样。
生1:表面积最小,就要尽可能地多摆几层。
大部分学生同意该生的意见,教师随接以12个小正方体为例,把图中的第二种拼法竖起来。
师:这个长方体共有6层,你能说它的表面积比3层(第四种拼法)的长方体表面积小吗?
生1很快补充:这种不能算真正的6层,如果把它推倒,只能算是一层2排。
师:那你的意思应该怎样表述更为准确呢?
生2:摆成的长方体既不能是一排,也不能是一层。
师:你的意思是说摆成的长方体,在高度上不能只有一层,在宽度上也不能只有一排,长、宽、高三个方向上要兼顾对吗?
学生普遍同意这样的表述。
师:同学们,你们分析得很好。大家不妨再来仔细观察刚才三种表面积最小的长方体的拼法,它们在形状上有什么特征?
生3:我认为如果能拼成一个大正方体,就一定要拼成正方体,如果不能拼成大正方体,那么就尽可能地把它们拼成近似于正方体的形状。
师:你的发现太深刻了!但老师还有一个问题,什么样的长方体才叫尽可能地接近正方体呢?
生:就是拼成的长方体的长、宽、高要尽可能地接近。
生4:老师,我还发现,用小正方体拼长方体,与我们五年级时学的用小正方形拼长方形有相似的地方,也就是拼得的图形越接近正方形,它的周长就越小。而这里是拼的形体越接近正方体,它的表面积就越小。
师:当然不要忘记前提条件,那就是小正方体的个数或小正方形的个数同样多。是吗?
[片段三]
(片段二教学结束,应该说已经很好地完成了我预定的教学目标,但我认为还可以进一步将表面积的变化规律进行简单的拓展。)
师:老师这里有一桶沙子,它是由许多小沙粒组成的,每个小沙粒也有体积,我们把这些沙子堆成怎样的形体,它的表面积最小?堆成怎样的形体,它的表面积最大?
学生一致认为把它堆成正方体的沙堆,它的表面积最小,而把这个沙堆平铺在地面上,铺得越薄,它的表面积就越大。
师:你们的想法很好!不过老师还要告诉你们,如果把它堆成一个球,它的表面积比正方体还要小。教室里一下子安静了一来,学生似乎都陷入了沉思。
师:冬天小狗、小猫在睡觉时总喜欢把身体蜷缩成一团,这是为什么?
生:这样可以更暖和。
师:为什么蜷缩成一团睡觉就更暖和呢?能否联系我们今天学的表面积变化规律想一想?
生:蜷缩成一团,身体更接近于一个球体,表面积最小,所以热量不容易散发出去。
因为对教材内容做了适当拓展,因此,我比其他教师多用了一课时才完成了教学。这一课时对学生应付考试或许没有直接的作用,但我认为是值得的。因为我充分利用教材提供的素材,适度拓展,引导学生利用已有的知识经验,探索了富有数学内涵的规律。
在这一过程中,学生经历了观察、比较、归纳、概括的过程,初步体验了从简单的数学现象出发探索一般数学规律的方法。应该说,在这一过程中,学生会发现数学的奇妙,会发现数学的乐趣。他们一定惊讶于小狗、小猫居然也“精通”数学!其实教材中像这样好的学习素材并不缺少,缺少的只是我们发现的眼睛!
面积的变化教学反思篇3
?表面积的变化》是苏教版六年级上册第二章的教学内容,在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积、体积的基础上教学的。主要让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
?表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地理解表面积的变化,我加强动手操作,按照创设情境实践操作自主探究掌握规律的教学流程进行教学。
1、知识目标:学生通过动手操作、观察比较、小组合作等方式探索长方体和正方体表面积的变化规律;
2、情感目标:学生在活动中体会合作的乐趣,感悟数学与生活的密切联系;
3、价值目标:学生能运用知识解释生活中的一些现象,将数学知识应用到日常生活中去。
重点:表面积变化规律的探索。
难点:应用发现的表面积变化规律解决一些简单实际问题。
一、创设情境,激发兴趣
二、动手操作,探究规律
三、拼拼说说,运用规律
四、全课小结
新课伊始,我通过多媒体,带领同学们到商场看看有关商品的包装问题,让学生说一说 为什么我们所见到的都是用这种样式进行包装呢这一情境,
观察两个正方体拼成长方体后表面积的变化情况。
教师演示,提出问题:体积有没有变化?表面积有没有变化?
教师小结:刚才我们用2个正方体拼成一个长方体,原来一共有12个面,拼成后减少了原来2个面的面积。课件出示数据:
用若干个相同的正方体拼成大长方体,表面积的变化情况。
演示操作,提出问题:表面积又发生了什么变化呢?
引导完成填表,组织交流发现的规律。
用两个相同的长方体拼成大长方体,表面积的变化情况。让学生分组拼一拼,表面积的变化情况。
1、过渡:刚才我们通过操作发现,几个相同的"正方体或长方体,拼成较大的长方体,表面积都发生了变化,而且都有一定的规律。揭示课题:表面积的变化。看看谁能运用刚才发现的规律很快解决这个问题?
2、出示题目:用6个体积是1立方厘米的正方体可以拼成不同的长方体,哪个长方体的表面积大?大多少?先自己想一想,然后在小组里交流你是怎样想的?
3、开展一个拼装小方块的实践活动把10小方块包装成一包有哪些不同的方法?先在小组里拼一拼,看看有哪些不同的包装方法
通过这课的研究和探讨,我们不仅发现了表面积的变化规律,而且将数学和生活仅仅的连在了一起。愿同学们在今后的生活中多观察和思考,了解事物变化的规律。
(一)、动手摆一摆、看一看、指一指,想一想、说一说,体会到表面积发生了变化,体验到两个正方体拼成长方体后表面积减少了原来两个面的面积。
猜想,操作探究,交流讨论,验证发现。
学生可能的发现:
1、拼的次数比正方体的个数少1.
2、拼一次少两个面。
3、拼得次数越多,表面积减少也越多。
(二)、学生可能发现的规律:
1、减少的面的面积越大,剩下的面的面积越小。
2、减少的面的面积越小,剩下的面的面积越大
(这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
a、通过学生自己动手实际操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映,同时结合思维活动,促进空间观念的形成。
b、通过学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律,从而使学生把关注点落到找寻规律上,能把表格中的数据综合起来看。通过这些引领,学生的空间观念也得到了培养。在学生充分交流的基础上,教者再带着学生到表格中再次体验规律,让规律成为每一位学生的发现。
c、学生的动手操作是建立空间观念的重要手段,通过学生动手操作,在活动中了解三种拼法,增强体验。通过动手操作、观察、直观思考、合作交流等活动,让学生在体验发现物体拼摆过程中表面积的变化规律中,提高空间观念的积累水平,发展数学思考。)
(三)、学生 可能的发现:
1、拼成长方体后,体积没有变化,表面积有变化。
2、都比原来减少了2个面的面积,不同的拼法减少的面积就不同。
3、可能出现几种摆法,就请同学们再在小组里拼一拼,比一比,说一说,然后让学生在比较中得出最节省的包装方法。
(这一环节拼拼说说,是运用规律解决实际问题。只有学生前面的规律体验深刻,学生才能灵活运用。)
1、拼的次数比正方体的个数少1.
2、拼一次少两个面。
3、拼得次数越多,表面积减少也越多。
1、减少的面的面积越大,剩下的面的面积越小。
2、减少的面的面积越小,剩下的面的面积越大
(1)拼成长方体后,体积没有变化,表面积有变化。
(2)都比原来减少了2个面的面积,不同的拼法减少的面积就不同活动四的结果说明:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。
本节课是一节综合实践活动课,是在学生学习了长方体、正方体的特征表面积的计算,体积、容积的意义及计算方法的基础上设计的实践活动。旨在让学生通过动手拼一拼、算一算,发现完全相同的正方体或长方体拼成新体形后的体积是原来小正方体或长方体的体积之和,体积没有变化,而拼成的新体形的表面积发生了变化,变化的'规律是比原来单个的总面积减少了,重叠一次减少两个面。
数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,安排了3次动手操作探究规律的活动:
活动一:两个正方体拼成长方体后表面积的变化情况。
活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。
活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两个长方体形状包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台, 而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
在学生掌握了正方体的表面积的变化规律后,我马上安排了一个小练习:应用规律,让学生对这个刚发现的新规律深刻地烙在脑中。之后才进行长方体拼长方体的延伸学习,这样就使得难点突破得更快了,也为下面的实际应用,打下了基础。在学了长方体的拼接之后我又给学生出示了更第二次练习,这样让学生将刚学掌握的知识运用到生活中解决生活中包装物品的实际问题,让学生学以致用,形成能力。
使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心,促进了学生思维的发展。
面积的变化教学反思篇4
从复习正方体、长方体表面积计算公式入手,进行拼正方体引起表面积减少,引发学生思考。这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,在体验规律中,我安排了3次拼拼算算:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若3个相同的正方体拼成大长方体,表面积的变化情况。活动三:用四个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的'巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台, 而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。用八个相同的正方体拼成一个长方体,表面积的变化情况;把一个面积较大的长方体和一个面积较小的正方体拼成一个图形,这个图形的表面积的变化情况。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。同学们可以动手拼一拼。
总之,本节课同学们学习兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦
面积的变化教学反思篇5
片段一:
师:请你用两个完全相同的小正方体拼成一个长方体。(学生动手操作)
师:操作后思考:
①拼成的长方体体积与原来两个正方体体积和有没有变化?
②拼成的长方体表面积与原来两个正方体的表面积和,有什么变化?
学生交流,教师板书:重叠1次,表面积减少2个面。
师:那么重叠2次,表面积会减少几个面?重叠3次、4次呢?
这样的结论是不是正确呢,请你先拼一拼,再观察,然后把表格填完整。
正方体的个数 2 3 4 5
拼接的次数
减少了原来几个面的面积
交流讨论:你从中发现了什么规律?
生1:拼接的次数乘2就等于减少的面积。
生2:正方体的个数减去1就等于拼接的次数。
生3:正方体的个数减去1的差乘2就等于减少的面积。
生4:就是这些小正方体必须排成一列。
师生共同小结:(正方体的个数-1)2=减少面的个数
反思:
学生答案是五花八门,有些甚至出人意料,但可以看出他们都在认真思考,积极动脑。由此看来,学生需要老师的鼓励,需要充分展示自己才华的舞台。想想自己平时在这方面可能做的还不够,今后应每堂课给予学生这样的机会,那样必然会出现精彩纷呈的局面。
片段二:
出示题目:把10个火柴盒包成一包,怎样包装最省材料?
师:题目问哪一种包装方法最省料?实际上就是比的什么?
生:比哪一种长方体的表面积最小。
师:怎样判别拼成的长方体的表面积是大还是小?
生1:数一共减少了多少个面,减少的面的`面积大而且要尽量的多。
生2:数外面还有多少个面。
生3:量一量,算出表面积。
师:我们先不用量量算算的方法,而要凭眼睛去看看数数,现在用10个火柴盒拼成的大长方体,你们觉得是数减少的面容易,还是数外面留下的面容易。
生:数外面的容易。
师:现在手中只有10个火柴盒,一次摆一种,每摆一种,就记下三种面的个数,填在表中。
师:请同学们四人一组,摆出不同的长方体,并把每次大中小三种面的个数情况记下来。最后进行比较,看看哪一种摆法表面积最小。
生:自由活动,摆、记、比。
小组交流,形成一些判别的规律、掌握比较技巧。
师:刚才有人提出量量算算的方法。正好刚才有几种摆法,大家一开始对它们表面积的大小有疑问,现在请你算算它们的表面积,验证一下我们的结论对不对?
学生计算,验证刚才的想法。
反思:
如果一开始就让学生进行测量,计算出表面积,学生一下子就能找出怎样包装最省材料,但是就失去了今天学习表面积的变化的意义。这个活动是在前面学生初步感知表面积变化的规律的基础上,引导学生应用数学知识解决生活中的的实际问题,让学生进一步巩固所学的数学知识,同时在解决实际问题的过程中体会数学的应用价值。为了避免活动的盲目性,让学生进行讨论,形成一定的共识,再开展活动,进行研究,提高效率。最后,通过计算,让学生进一步确信最佳的包装方法。这样通过有效的操作,从而提高了学习的效率,促进了学生思维的发展。
会计实习心得体会最新模板相关文章: