王科范文网 >活动方案

三条鱼教案5篇

编写详细的教案可以让我们提前预测学生可能遇到的问题和困难,做好备课准备,通过教案能够促进学生的积极参与和自信心的建立,下面是王科范文网小编为您分享的三条鱼教案5篇,感谢您的参阅。

三条鱼教案5篇

三条鱼教案篇1

小班优秀教案《小鱼游游》

活动目标:

1、在游戏情境中幼儿能对颜色、大小、数量进行判断,并做出相应的动作。

2、体验与同伴共同游戏的快乐。

活动准备:

1、不同颜色、大小、数量的鱼宝宝图片

2、不同颜色的“池塘”5个

活动过程:

一、猜猜谁来了

1、游游的音乐,猜猜谁来了,并用动作表现出来

2、出示不同颜色、大小的鱼宝宝

3、幼儿根据自己的喜爱选择鱼宝宝

二、鱼宝宝找朋友

1、师念儿歌,引导幼儿边作动作边玩游戏

2、游戏:鱼宝宝找朋友数量上不断变化

三、小鱼游游

(一)区分颜色

1、出示不同颜色的“池塘”

2、幼儿根据自己挑选的鱼宝宝并游进相同颜色的“池塘”

3、幼儿数一数有几条相同颜色的鱼宝宝,并找到相对应的数字

(二)区分大小

1、出示不同大小“池塘”

2、幼儿根据自己鱼宝宝的大小并游进想对应的“池塘”

3、幼儿数一数有多少条大鱼宝宝和小鱼宝宝,并找到相应的数字

4、具体数出有多少条不同颜色的大小鱼宝宝,充分调动幼儿的感官

四、结束

三条鱼教案篇2

教学目标:

1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

教学重点、难点:

探索并发现三角形任意两边之和大于第三边。

教学准备:

学生、老师各准备几根长短不等的小棒、直尺、探究报告单。

教学过程:

一、复习旧知,导入新课

这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

二、动手操作,发现问题

师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

生:三角形。

师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。

三、猜想验证,发现规律

师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

生:换一根小棒

师:怎样换?同学们说的都是你们的猜想(演示猜想1)

1、学法指导

师:你们的这些猜想是否正确,三角形的.三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。

操作要求:

(1)、2人一组合作完成四种拼法

(2)、围三角形时要注意首尾相连。

(3)、完成后,填写好活动记录表准备交流

第一根小棒长

第二根小棒长

第三根小棒长

能否围成三角形

2、 动手操作,寻找规律(师巡视,并指导)

3、 交流汇报,探究规律。

师:哪个小组愿意来汇报。

小组上台展示,

3厘米、8厘米、10厘米 能

3厘米、5厘米、10厘米 不能

3厘米、5厘米、8厘米 不能

5厘米、8厘米、10厘米 能

师:其它组有不同意见吗?

师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

三根小棒要围成三角形,必须满足什么条件?

通过刚才的.实验和分析,你发现三角形三条边长度之间有什么关系吗?

先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

生:

师:其他同学赞同吗?谁再来说一说。

师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)

师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

生:3+5=8 重合了 不能

师:是这样吗?(演示)请看大屏幕。

师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

师:那么怎样才能围成三角形呢?

生:两条边加起来要大于第三边就行了。

师(板书):两边之和大于第三边

师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10

看起来是这样的。

3、师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

生:有一种不符合就不行了

师:看来只是其中的两条边之和大于第3条边是不完整的,

生1:加“任何”、“任意”

生2:其他两边之和都大于第三条边。

生3:无论哪两条边之和都要大于第三边。

4、归纳小结

师:看来只是其中的两条边之和大于第3条边是不完整的,

师:这句话概括说就是:任意两边之和大于第三边(板书:任意)

师:是这样吗?再挑选一组能围成三角形的三条边,来验证:

生:3+4>5、3+5>4、4+5>3,

师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

四、课堂小结

老师在生活中还看到了这么一种现象:(演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?

师:今天你有什么收获?

其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。

三条鱼教案篇3

幼儿园小班教案:儿歌《三条小鱼游》

?儿歌内容】:

?三条小鱼游》

一条小鱼,水里游。孤孤单单在发愁。两条鱼,水里游。摆摆尾巴点点头。

三条小鱼,水里游。快快乐乐笑开口。小鱼尾巴摇,青蛙呱呱叫。

三条小鱼,水里游。快快乐乐做朋友。

?教材分析】:

?三条小鱼游》这是一个相对拟人化,生活化的儿歌。我们每个人都会结交朋友,与朋友在一起。儿歌通过小鱼在

水里找朋友的事件,让孩子们知道朋友之间要团结友爱,快快乐乐的在一起。提升了孩子情感的发展。

?活动目标】:

1.在老师的引导下学习儿歌,发挥幼儿的想象力。理解词:孤孤单单。

2.通过儿歌,知道同伴之间要团结友爱,快快乐乐的在一起。

?活动准备】:

1.三只金鱼缸(分别放一、二、许多金鱼)2.音乐《找朋友》

?活动过程】:

一.导入:引起幼儿的兴趣。

1.(发出叹气声)师:你们听到了什么?(叹气声)是谁在叹气呢?

2.(出示一条金鱼)师:是谁呀?它为什么叹气呢?(请小朋友说一说,帮助幼儿理解词:孤孤单单)

3.师:你想让小金鱼快乐起来吗?怎样帮助它呢?(请小朋友说一说)4.(出示两条小金鱼)师:瞧!老师帮它找到了好朋友,现在有几条小金鱼了呀?想想看,它们会怎样呢?(请小 朋友说一说)

5.师:你们还想帮它们找朋友吗?(出示许多小金鱼)师:瞧!这里有几条小金鱼呀?(许多)许多小金鱼在一起

会怎样呢?(请小朋友说一说)(丰富词汇:亲亲热热、快快乐乐)

二.欣赏儿歌《小金鱼》

师:小朋友说的真棒!老师把你们刚才说的编了一首好听的儿歌,我们一起来听一听,好吗?

1.教师完整朗诵一遍。师:你听到儿歌里说了些什么呀?(请小朋友说一说)

2.幼儿学习朗诵儿歌。师:小朋友,我们一起也来读一读刚才自己编的好听的儿歌,好吗?(幼儿边看实物边进行 朗诵儿歌)

3.根据儿歌进行表演。(加以动作,巩固幼儿对儿歌的理解)

三.教师小结。

1.师:小朋友,你们看,许多小金鱼在一起多快乐呀,它们就像一个大家庭,有爸爸、有妈妈,亲亲热热到在一 起,好幸福呀!

2.师:你们想不想扮演小金鱼呀?(请小朋友挂上金鱼胸饰,在音乐《找朋友》中游戏。师:小鱼宝宝,你们找到

好朋友了吗?我们一起去玩吧。(听音乐《小鱼游》)

三条鱼教案篇4

教学目标:

1、探究、发现三角形任意两边的和大于第三边,初步理解三角形三边的关系。

2、经历操作、发现、应用的过程,渗透数学思想与方法,积累数学活动经验,培养自主探究、合作交流的能力。

3、激发学生探究愿望和兴趣,培养参与数学活动的积极性和严谨的科学态度。

教学重点:

探究、发现三角形任意两边的和大于第三边。

教学难点:

应用数据发现三角形三边的关系,理解“任意”的含义。

教学设计思路:

这节课,精心设计了一系列的数学活动,让学生“在参与中体验,在活动中发展”。课堂上,学生通过自主操作、自主估猜、自主探究、自主迁移,深入认识三角形。通过课上师生之间、生生之间充分交流合作,学生自然、自主、自由地发展。

教学过程:

活动一:引发质疑,提出问题。

1、 出示各种三角形。(这些是什么图形,什么是三角形?)

2、 出示三根纸条红、蓝、黑。

师:我们把这三根纸条看成三条线段,你能把它围成三角形吗?

生代表上来围。师:你们觉得他围得怎么样?生补充围。我真佩服你的细心。纸条要顶点对着顶点,首尾相连,这样才能真正用上了这三根纸条的长度。

3、围三角形比赛,(看来同学们都会围了,现在我们来进行一场比赛吧。从信封拿出纸条1号袋红3cm,蓝6cm,黑11cm。2号袋红3cm,蓝6cm,黑5cm。

4、讨论

为什么有些能围成有些围不成,板书(围不成) (围成)它可能跟什么有关系呢?我们来猜想一下,你说:

生1:可能跟边有关。

生2:跟边的长短有关系。

师:那么三角形三边长短之间到底有怎样的关系呢?这就是这节课我们要探究的课题:出示课题《三角形三边的.关系》。

活动二:探索发现,总结归纳

1、动手操作:

师:刚才我们用蓝6㎝,红3㎝,黑11㎝,不能围成三角形,请不能围成三角形的同学上来展示(看来不是操作不当,到底是什么原因呢?

生:11厘米太长了,那两根太短了。

师:上面这两根和下面这根比,你发现了什么?

生:我发现两根小棒之和小于第三根。

师:从你的回答,我听到了智慧的声音,以前我们总是考虑一根和另一根去比长,而现在却考虑用两根的和去与第三根进行比较,真了不起!

能不能用一个算式来表示呢?

生;3+6﹤11。

师:两边的'和小于第三边不能围成三角形,两边的和与第三边有怎样的关系就可以围成三角形呢?

生:两边的和大于第三边。

生:两边的和等于第三边。

(过渡)同学们有不同的猜想,生活当中许多重大发现都从猜想开始,但是光猜还不行,我们还得从实践中加以验证,接下来我们从探究验证我们的想法,我们把3cm和6cm两边的和不变缩短黑边的长度,为了便于研究,我们移到整厘米,注意刻度线对刻度线。一边围一边想,这两个结论是否正确,找到规律就可以不用每个刻度都要试,即动手又动脑,才是高效的探究。现在小组一起,可分工不同移动的刻度,要有一个同学作记录。(活动教师巡视指导)

2、汇报交流

教师:下面请同学们来汇报一下你的操作结果。

请不同的学生汇报,教师在课件中输入数据和结果。

第二层:猜想,初步得出三角形边的性质。

师:长度是9厘米时,有争议,图形有些特殊我们重点研究它,请不能围成的同学上来说说不能围成的原因。

生:只要将纸条3cm或6cm稍微抬高一些,纸条3cm和6cm就不能首尾相连了。师:利用课件演示。问能围成的同学此刻的想法。(善于思考能接纳同学的建议很会学习)

生:两边之和大于第三边时能围成,用3cm、6cm和7cm展示。

师:这个猜想对不对呢?这需要进行验证,看看这些能围成三角形的边是不是具备这样的关系?3+6﹥7还有谁也得出这样的结论?指名说。

师:是不是两边的和大于第三边就一定能围成三角形呢?我们用不能围成和围成对比看看。有谁改变主意了?

第三层:引发矛盾,突破难点

生:用3cm、6cm、11cm不能围成三角形,它也有两条边的和大于第三边板书(3+11﹥6)

师:那这个结论正不正确,除了这两个算式还能写出第三个算试吗?

生:6+11﹥3 围成的呢,3+7﹥6 7+6﹥3。

师:还有别的算式吗?(没有)在围成三角形当中每两边的和都大于第三边,而不能围成的只有两组两边的和大于第三边。在数学中,每两边的和都大于第三边的,叫做任意两边的和大于第三边(板书)

师:什么叫任意?

师:下面我们利用这个结论,再来验证一下3cm、6cm、4cm,是不是都具备这样的关系?

第五层:找出判断能不能围成的简捷方法。

师:在判断能不能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?在小组内想一想,说一说;引导学生发现,因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了,所以呢?只要把较小的两条边,加起来与第三边进行判断,就可以了。

三条鱼教案篇5

教学内容

人教版义务教育课程实验教科书数学四年级下册p82页。

教学目标

1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。

2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

教具、学具准备

多媒体课件,不同长度不同颜色的小棒若干根,实验表格 。

教学过程

一、创设情境,导入新课

师:(出示课件)同学们看,图上这些地方你们都熟悉吗?

(我们的学校、鼓楼商场还有学校后门的建设银行。)

师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?

师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?

师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?

师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?

师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。

师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的`办法证明我们的这种判断是正确的呢?

(学生困惑,沉默不语.)

师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?

(板书课题:三角形的三边关系)

二、设疑激趣,动手探究

师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)

师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的.发现。

师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?

(学生上台演示,其他同学看。)

师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?

师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。

同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。

(单位:厘米)

能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

不能围成三角形的三根小棒(红、蓝、黄)的长度分别是 :

你的重大发现

三、汇报交流,发现规律

让每组同学汇报围成和围不成三角形的数据。

师:同样用三根小棒,为什么有的能围成三角形,为什么有的不能围成三角形呢?你从中发现了什么?

根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况 ;两边之和小于第三边的情况)

师:到底什么样长度的三根小棒可以围成三角形呢?

结论一: 两边之和大于第三边。

师:同学们都同意这个结论吗?有不同意见吗?

根据学生的情况,随机用不能围成的一组数据,如“3、7、10”举一例:3+10>7,那为什么不能围成一个三角形呢?

师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?

进一步得出

结论二: 三角形任意两边之和大于第三边。

师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。

师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。

四、学以致用,解决问题

五、全课小结。

会计实习心得体会最新模板相关文章:

灯笼鱼教案6篇

灯笼鱼教案推荐7篇

鱼健康领域教案通用7篇

鱼健康领域教案优秀6篇

鱼健康领域教案7篇

彩色鱼教案通用7篇

彩色鱼教案7篇

小班美术涂颜色鱼教案8篇

认识鱼小班教案优质6篇

认识鱼小班教案推荐6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    112760

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。