王科范文网 >活动方案

六年级下册圆柱的体积教案5篇

教案是老师上课之前都要准备好的,教案重在设定教学的内容和行为,下面是王科范文网小编为您分享的六年级下册圆柱的体积教案5篇,感谢您的参阅。

六年级下册圆柱的体积教案5篇

六年级下册圆柱的体积教案篇1

教学内容:

教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

教学目标:

1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

重点难点:

掌握圆柱体积公式的推导过程。

教学资源:

ppt课件 圆柱等分模型

教学过程:

一、联系旧知,设疑激趣,导入新课。

1.呈现例4中长方体、正方体和圆柱的直观图。

2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

二、动手操作,探索新知,教学例4

1.观察比较

引导学生观察例4的三个立体,提问

⑴这三个立体的`底面积和高都相等,它们的体积有什么关系?

⑵长方体和正方体的体积一定相等吗?为什么?

⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

2.实验操作

⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

操作教具,让学生观察。

引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

3.推出公式

⑴提问:拼成的长方体与原来的圆柱有什么关系?

指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

⑵想一想:怎样求圆柱的体积?为什么?

根据学生的回答小结并板书圆柱的体积公式

圆柱的体积=底面积高

⑶引导用字母公式表示圆柱的体积公式:v=sh

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式v= sh

三、分层练习,发散思维,教学试一试

⑴让学生列式解答后交流算法。

⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

(s和h,r和h,d和h,c和h)

四、巩固拓展练习

1.做练一练第1题。

⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

⑵各自练习,并指名板演。

⑶对照板演,说说计算过程。

2.做练一练第2题。

已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

五、小结

这节课我们学习了什么?有哪些收获?还有什么疑问?

六、作业

练习三第1~3题。

六年级下册圆柱的体积教案篇2

目标:

1、 理解圆柱体积公式的推导过程,掌握计算公式。

2、 会运用公式计算圆柱的体积,提高学生知识迁移的能力。

3、 在公式推导中渗透转化的思想。

重点:

理解圆柱的体积公式的推导过程。

难点:

圆柱体积的计算。

用具:

课件、圆柱模型。

过程:

1、 教师提问。

(1)什么叫物体的体积?怎样求长方体的体积?

(2)圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?

2、 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)

1、 教学例5。

讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:

①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)

②通过刚才的实验你发现了什么?

a、拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。

b、拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。

c、这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。

(4)学生根据圆的面积公式的推导过程,进行猜想。

①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

(5)通过以上的观察,启发学生说出发现了什么。

①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的.体积怎样计算?

②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)

③用字母表示圆柱的体积公式。(板书:v=sh)

2、 教学例6。

出示教材第26页例6。

(1)学生读题,理解题意。

(2)教师:要知道能否装下这袋奶,首先要计算出什么?

学生:杯子的容积。

(3)指明要计算杯子的容积,学生在练习本上完成。

杯子的底面积:3.14×(8÷2)2=50、24(cm2)

杯子的容积:50、24×10=502、4(ml)

答:因为502、4大于498,所以杯子能装下这袋牛奶。

3、 教学例7。

师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)

生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。

生2:我们可以先转化成圆柱,再计算瓶子的容积。

师:怎样转化呢?说说你的想法。

学生可能会说:

瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。

也就是把瓶子的容积转化成了两个圆柱的体积。

……

师:尝试自己解答一下。

学生尝试解答;教师巡视了解情况。

组织学生交流汇报:

瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18

3.14×(8÷2)2×7+3.14×(8÷2)2×18

=3.14×16×(7+18)

=3.14×16×25

=1256(cm3)

=1256(ml)

答:这个瓶子的容积是1256ml。

只要学生解答正确就要给予肯定,不强求算法一致。

?设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】

师:在本节课的学习中,你有哪些收获?

学生可能会说:

利用“转化”可以帮助我们解决问题。

我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。

在五年级时,计算梨的体积也是用了转化的方法。

……

?设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】

圆柱的体积

长方体的体积=底面积×高

↓ ↓ ↓

圆柱的体积=底面积×高

v=

a类

1、填表。

底面积s(平方米) 高h(米) 圆柱的体积v(立方米)

15 3

6.4 4

2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?

(考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)

b类

两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?

(考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)

课堂作业新设计

a类:

1、 45 25.6

2、 314平方米 471立方米

b类:

54立方分米

教材习题

第25页“做一做”

1、 75×90=6750(cm3)

2、 3.14×(1÷2)2×10=7.85(m3)

第26页“做一做”

1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356l 0.75361 不够。

2、 3.14×(0.4÷2)2×5÷0.02≈31(张)

第27页“做一做”

3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6ml

第28页“练习五”

1、 3.14×52×2=157(cm3)

3.14×(4÷2)2×12=150.72(cm3)

3.14×(8÷2)2×8=401.92(cm3)

2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340ml

3、 3.14×(3÷2)2×0.5×2=7.065(m3)

4、 80÷16=5(cm)

5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨

6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)

体积:3.14×(6÷2)2×12=339.12(cm3)

表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)

表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)

体积:3.14×(14÷2)2×5=769.3(cm3)

7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)

8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58ml

932、58800 不够

9、 81÷4.5×3=54(dm3)

10、 3.14×(10÷2)2×2=157(cm3)

11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304l 1.13041 能装满。

12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)

13、 30×10×4÷6=200(cm3)=200(ml)

14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)

15、 第四个圆柱的体积最小;第一个圆柱的体积最大。

发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。

六年级下册圆柱的体积教案篇3

教学内容:

本内容是六年级下册第8页至第9页。

教材分析:

本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

学生分析:

学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

学习目标:

1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

教学过程:

出示教学情境:一个杯子能装多少水呢?

想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)

出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?

(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

验证:能否将圆柱转化为学过的立体图形?

让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。

思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

学生讨论交流:

1、把圆柱拼成长方体后,什么变了,什么没变?

2、拼成的长方体与圆柱之间有什么联系?

3、通过观察得到什么结论?

得到:圆柱的体积=底面积×高

v=sh=πr2h

(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

练习设计:

1、计算下面各圆柱的体积。

(1)s=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm

2、算一算:已知一根柱子的底面半径为0。4米,高为5米,你能算出它的体积吗?

(设计意图:使学生达到举一反三的效果,从而训练学生的.技能,灵活掌握本课重点。)

3、试一试:

(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

(2)一根圆柱形铁棒,底面周长是12。56厘米,长是100厘米,它的体积是多少?

(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)

4、拓展练习:

(1)填表:

填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。

(设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)

(2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?

(设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)

课堂小结:谈谈这节课你有哪些收获?

(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

教学反思:

本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。

情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。

六年级下册圆柱的体积教案篇4

设计说明

本节课是在学生已经了解了圆柱的特征,掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。根据学生的认知水平和已有经验,本节课在教学设计上体现了以下几个特点:

1.创设问题情境,点燃探索激情。

基于“数学来源于生活,又应用于生活”这一理念,教学过程中通过呈现身边圆柱的体积问题,使学生感受到数学与现实生活的密切联系,认识到学习圆柱的体积计算公式的必要性,从而激发了学生的探究兴趣,使学习成为学生自觉的需求。

2.注重直观教学,引导合作迁移。

数学理论的表述往往是抽象的,它影响了学生数学思维的发展,而引导学生从观察和分析有关具体实物入手,就比较容易理解概念的本质特征。所以,教学中不但设计了通过排水法理解圆柱体积的实验,而且还借助教具演示、课件演示等直观教学手段帮助学生推导出圆柱体积的计算公式,使学生从感性认识上升到理性认识,体会到知识的`由来。

3.渗透数学思想,发展数学思考。

在本节课的教学中,充分利用教材内容,对学生有效地进行转化思想的渗透,使学生在体会运用转化思想可以化难为易、化复杂为简单、化生疏为熟悉等作用的同时,参与数学活动,提高解决问题的能力。

课前准备

教师准备 ppt课件

学生准备 圆柱形实物

教学过程

⊙情境引入

1.操作感知体积的意义。

通过出示一个装了半杯水的烧杯,引导学生猜测:在烧杯中投入一个圆柱形物体,会有什么现象发生?

(水面升高或者水会溢出来)

师:为什么会有这种现象发生?

预设

生1:圆柱占有一定的空间。

生2:圆柱占据了原来水占有的空间。

生3:圆柱是立体图形,它具有一定的体积。

2.讨论、概括圆柱的体积的意义。

师:你认为什么是圆柱的体积?

(圆柱所占空间的大小,叫做圆柱的体积)

3.引入:这节课我们就一起来探究圆柱体积的计算方法。

(板书课题:圆柱的体积)

设计意图:通过操作、演示,使学生在猜测、观察、讨论中加深对抽象的“体积”概念的理解,自主概括出圆柱的体积的意义,为下面的探究活动做好充分的准备。

⊙自主探究

1.探究影响圆柱的体积大小的相关因素。

(1)课件出示两个大小不等的圆柱。

师:哪个圆柱的体积比较大?为什么?

预设

生1:左面的圆柱的体积比较大,因为它高一些。

生2:右面的圆柱的体积比较大,因为它粗一些。

生3:不好比较。因为左面的圆柱虽然高,但比较细;右面的圆柱虽然粗,但比较矮。

(2)讨论、概括。

师:圆柱的体积的大小与哪些因素有关?

(圆柱的体积的大小与圆柱的高及圆柱的底面积的大小有关)

六年级下册圆柱的体积教案篇5

教材简析:

本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

教学目的:

1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

4.借助实物演示,培养学生抽象、概括的思维能力。

教具:

圆柱的体积公式演示教具,多媒体课件

教学过程:

一、情景引入

1、出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?

(2)你能用以前学过的方法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

(4)说一说长方体体积的计算公式。

2、创设问题情景。(课件显示)

如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的`探究氛围。)

二、新课教学:

设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。

板书课题:圆柱的体积。

1.探究推导圆柱的体积计算公式。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题。

①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

③圆柱的体积=底面积×高字母公式是v=sh(板书公式)

讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积×高)用字母表示:。(板书:v=sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)

会计实习心得体会最新模板相关文章:

四年级下册语文教案5篇

2023一年级下册数学教案5篇

四年级下册语文教案模板5篇

部编版三年级语文下册教案5篇

一年级数学下册新课标教案5篇

六年级数学比例的基本性质教案6篇

六年级分数乘分数教案5篇

二年级语文教案下册人教版教案7篇

六年级数学正比例教案5篇

四年级下册语文教案通用6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    53484

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。